汽车差速器壳体加工解决方案

SECO !

袁训亮 2019-9-26 南京

山高在众多典型汽车零部件上拥有成熟的解决方案

山高在众多典型汽车零部件上拥有成熟的解决方案

 转向节
 制动钳体
 同步器环

 制动支架
 齿轮

 差速器壳体
 刹车盘

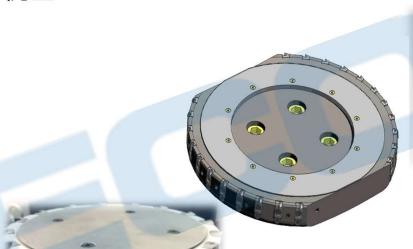
桥壳

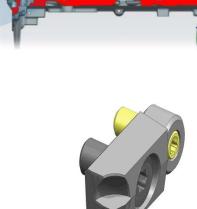
高效多齿PCD面铣刀

刀体: D=220mm 航空铝质刀盘

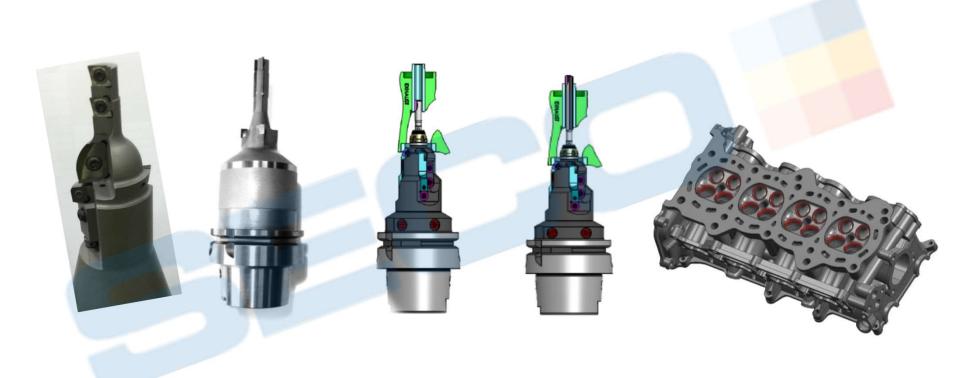
刀片: PCD刀片

切削参数:


Vc= 2800m/min;


Fz= 0.1mm/t;

ap= 0.5 mm;


Z= 22

刀具寿命:8000-16000件

缸盖-气门阀座导管孔

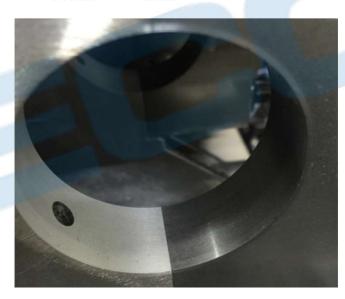
曲轴孔的双金属铰削

加工材料:

双金属曲轴孔1: 缸体AlSi9Cu3硬度HB≥85、曲轴盖QT500硬度HB170~241

双金属曲轴孔2:缸体AlSi9Cu3硬度HB≥85、曲轴盖F0203J硬度HB≥110

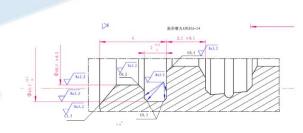
加工直径: Ø51.7/Ø52


合金刀片: PV4-EN1-06,CP20

Vc=200 m/min

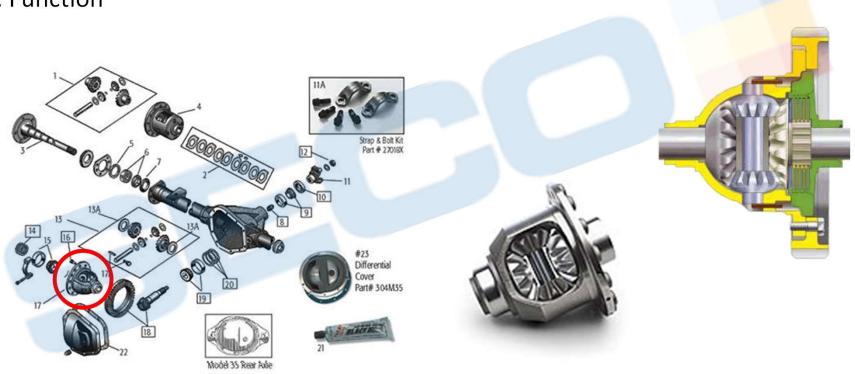
n= 1225 rev/min

fz=0.11 mm/t

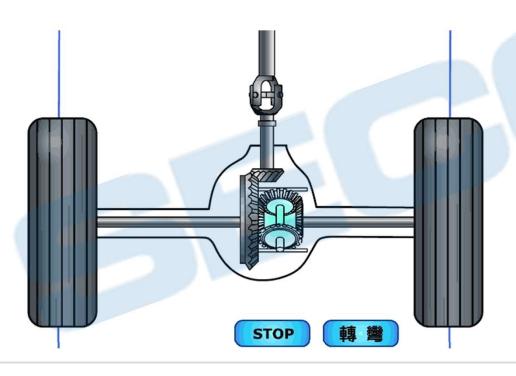

Vf=135 mm/min

制动钳加工刀具-密封槽铣削

- Sealing Groove Disc milling
- Densimet shank + steel cutter, to dampen vibrations.
- Left and right insert design for protection groove to prevent chips jammed.
- Standard insert for dirt groove to reduce cost per part.
- Cutting edges: 4 (cutter diameter≥D44)
- Vc=200 m/min, fz=0.2mm
- Cycling passes: 3
- Tool life: 1700 parts per edge


Special Insert with 4 edges

转向节加工刀具

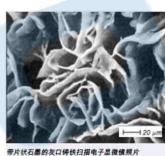


1. Function

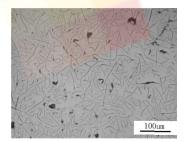
1. Function

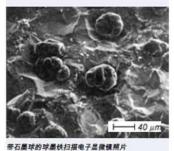
- 差速器部件功能:
- 汽车差速器是驱动轿的主件。它的作用就是在向两边半轴传递动力的同时,允许两边半轴以不同的转速旋转,满足两边车轮尽可能以纯滚动的形式作不等距行驶,减少轮胎与地面的摩擦。

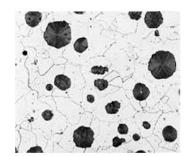
2. Component

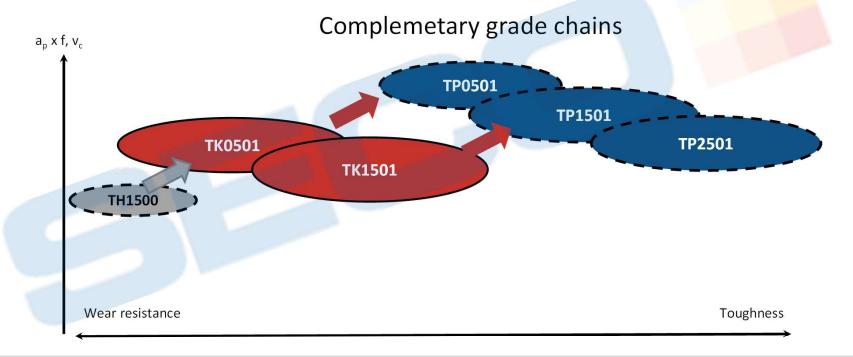

Two types:

- Monobloc-1
 - Full Spherical-1.1
 - Half Spherical-1.2
- Open: (in 2 parts)-2
 - the housing -2.2
 - the cover-2.1

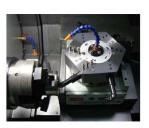





- 3. Material
- Nodular Cast Iron «GGG»-SMG K4
 - QT500-7
 - QT600-3
- Grey cast iron «GG» -SMG K1-K2
 - for low power vehicles



FOR INTERNAL USE ONLY


3. Duratomic® for Cast Iron Turning

- 4. Machining Process
- Option1: CNC Lathe+ Vertical Mach. Center with 4th axis
- Option 2: Vertical turning center with pick-up spindle
- Option 3: CNC Lathe+TurnMill Center

Comments:

- Low investment
- Start from Cast
- Long production line

- 4. Machining Process
- Option1: CNC Lathe+ Vertical Mach.
 Center with 4th axis
- Option 2: Vertical turning center with pick-up spindle
- Option 3: CNC Lathe+TurnMill Center

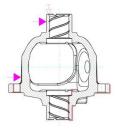
Comments:

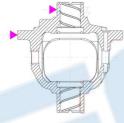
- Easy to automation system
- Component needs to be pre machined
- Less machines involved in the production line

- 4. Machining Process
- Option1: CNC Lathe+ Vertical Mach.
 Center with 4th axis
- Option 2: Vertical turning center with pick-up spindle
- Option 3: CNC Lathe+TurnMill Center

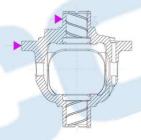
Comments:

- Good choice for the old production line update
- Invest only for the TurnMill Center to control the important dimensions

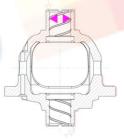




• A typical processing plan for Monobloc half Spherical Housing


OP10

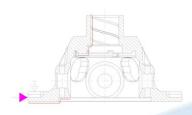
Turn the external and internal dimensions on the flange side


OP20

Turn the external and internal dimensions on the other side

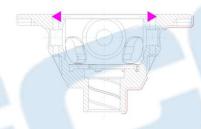
OP30

Finish turning the internal dimensions on both sides and spherical surface

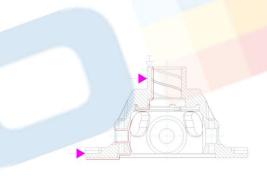


OP40

Finish turning the external dimensions on both sides



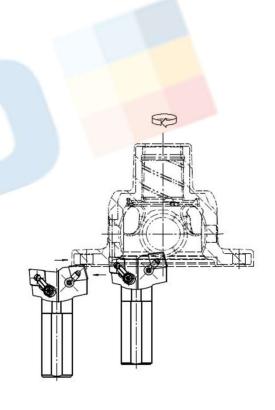
• A typical processing plan for Open Housing


OP10

Rough turning the internal dimensions from the flange side

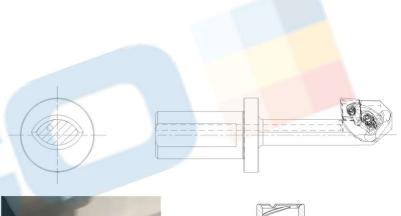
OP20

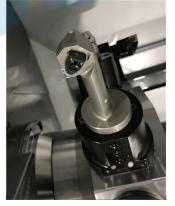
Rough and finish turning the external dimensions

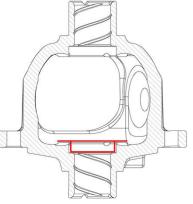

OP30

Finish turning the internal dimensions and spherical surface

- Combined tools to reduce tool change time
- Custom designed tools to obtain the most rigidity
- Use as much cutting edges as possible to reduce cost per part.

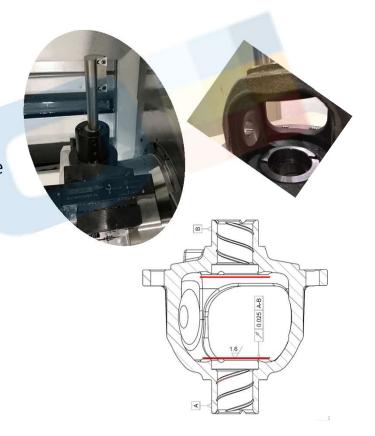

Insert	CNMG120408-M3,TK1501
Toolholder	
Cutting Speed	m/min
feedrate	mm/r





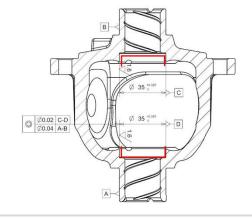
- Densimet tool bar to damp vibration
- Ellipse-shaped bar to reinforce the rigidity

Insert	CNMG120408-M3,TK1501
Toolholder	
Cutting Speed	230 m/min
feedrate	0.3-0.4 mm/r (ap=1-1.5mm)



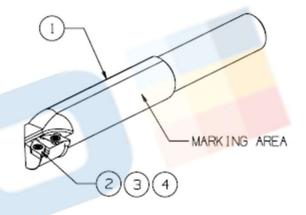
- Densimet tool bar to damp vibration
- Finish turning both sides in one cutter to keep the distance tolerance
- Ellipse-shaped bar to reinforce the rigidity

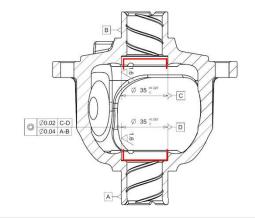
Insert	TCMT16T308-M3,TK1501
Toolholder	
Cutting Speed	230 m/min
feedrate	0.35 mm/r



- Densimet tool bar to damp vibration
- Finish turning both sides in one cutter to keep the axiality tolerance
- Ellipse-shaped bar to reinforce the rigidity

Insert	CCMT120408-M3,TK1501
Toolholder	RH-500.22-03208682
Cutting Speed	m/min
feedrate	mm/r





- Densimet tool bar to damp vibration
- Finish turning both sides in one cutter to keep the axiality tolerance
- Ellipse-shaped bar to reinforce the rigidity

Insert	DCGT11T04F-AL,TS2050
Toolholder	RT-500.32-03262536
Cutting Speed	140 m/min
feedrate	0.08 mm/r



- Steadyline bar to damp vibration
- Positive insert to reduce cutting forces

Insert	DCGT11T04F-AL,TS2050
Toolholder	GL25-SDUCL-17020-11 D25-130-GL25
Cutting Speed	160 m/min
feedrate	0.08 mm/r

Steadyline-Passive, dynamic damping system

The vibration is absorbed as soon as it is transmitted to the turning bars body

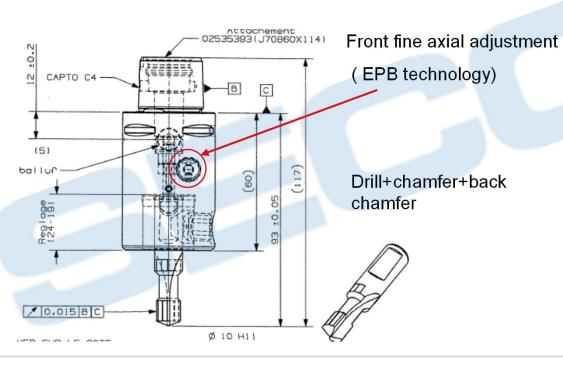
Steadyline-Passive, dynamic damping system

- Modular designed GL connection
- One bar for a wide range of turning heads

Machining Process-Drilling

- Combined drilling and spotfacing in one cutter
- S type insert for spotfacing- stable and predictable tool life
- Internal coolant design

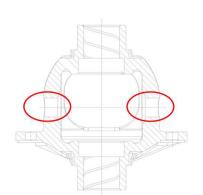
Drill	Φ10.4 S.C. drill with chamfer
Insert	SPMX060204-75,F40M
Toolholder	Ф23 Spotfacing
Cutting Speed	S2400- 80 m/min for drill S1600- 116 m/min for spotfacing
feedrate	0.26 mm/r for drill 0.06 mm/r for spotfacing


Driven by a VDI toolholder.

Machining Process-Drilling

Machining Process-Drilling

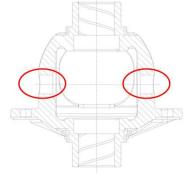
- Seco new Perfomax Drill
- Economical solution due to the indexable insert solution
- Standard drill body and inserts


 Insert
 SCGX050204-P2,DP2000 SPGX0502-C1,T400D

 Drill
 SD523-17-51-20R7

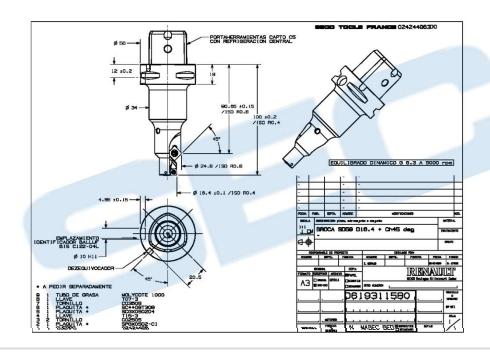
 Cutting Speed
 117 m/min (S=2200)

 feedrate
 0.08 mm/r


Machining Process-Drilling

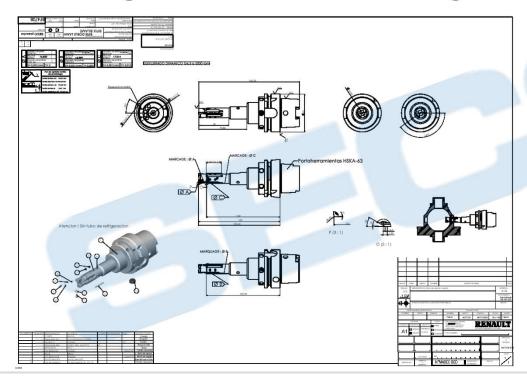
- Rough boring the hole with chamfer and back chamfer in one cutter
- Only one type of S insert is used

Driven by a VDI toolholder.


Insert	SCGX060204-P2,DP3000
Cutter	D17.7 boring bar with chamfer and back chamfer
Cutting Speed	83 m/min (S=1500)
feedrate	0.12 mm/r

Machining Process-Drilling

Machining Process-Drilling

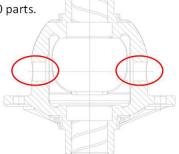

- Material Cast Iron GS54 (GGG600)
- Component has 2 thru holes , hole depth approx. 15mm.
- Coolant 5-6bar, 5-8% oil.
- Tool life 300 components/edge = 600 holes/edge

Insert	SCGX050204-P2,T2000D SPGX0502-C1,T400D
Drill	D16.4 drill with chamfer
Cutting Speed	154 m/min (S=2984 rpm)
feedrate	0.1 mm/r (F=298 mm/min)

Machining Process-Satellite axis reaming

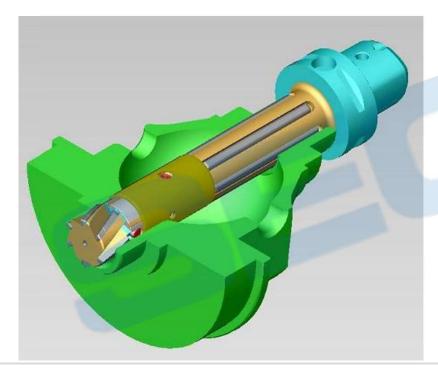
Machining Process-Satellite axis reaming

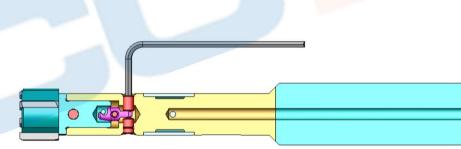
HSK83 C
Serage au couple 15 N.m*

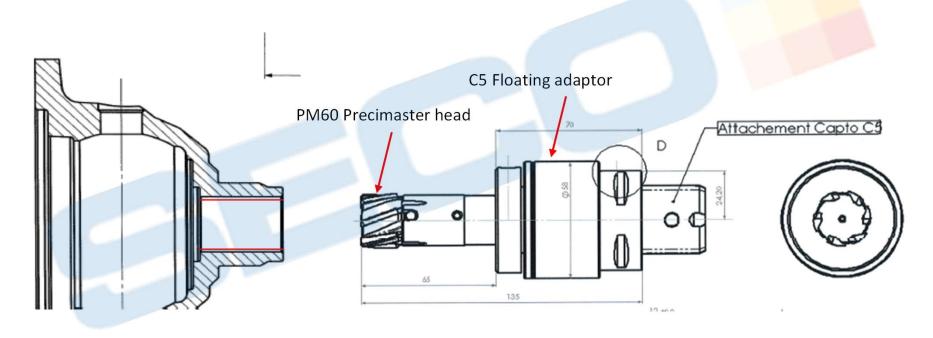

Machining Process-Satellite axis reaming

- Solid carbide reaming head-higher cutting speed;
- Multi teeth design-higher federate;
- Hole Diameter Φ19.12G7 (+0.007/+0.028);
- Roughness- Ra3.2;

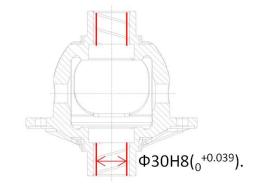
Reamer	PMX5-19.122/19.143-EB845, RX2000 (Z=6)
Shank	PMX08-08200-20N1
Cutting Speed	39.5 m/min (S=650)
feedrate	0.7 mm/r (F=450)




Diameter is out of tolerance but the roughness is still Ra3.0 after 4000 parts.


Machining Process-Planetary axis reaming

Machining Process-Planetary axis reaming



Machining Process-Planetary axis reaming

- **■** Hole Diameter Φ 30H8($_0^{+0.039}$);
- Roughness- Ra3.2;
- L/D ratio is 6;
- Solid Carbide shank

Reamer	PMX5-30H7-EB45,RX2000 (Z=8)
Shank	PMX12THM-43675 (OAL=193)
Cutting Speed	75 m/min (S=800)
feedrate	0.75 mm/r (F=600)

Machining Process-Spherical roughing

- Used in machines with B axis
- Steel bar for roughing

Insert	DCMT11T308-F1,TK2001
Tool	
Cutting Speed	m/min (S=650)
feedrate	0.1 mm/r

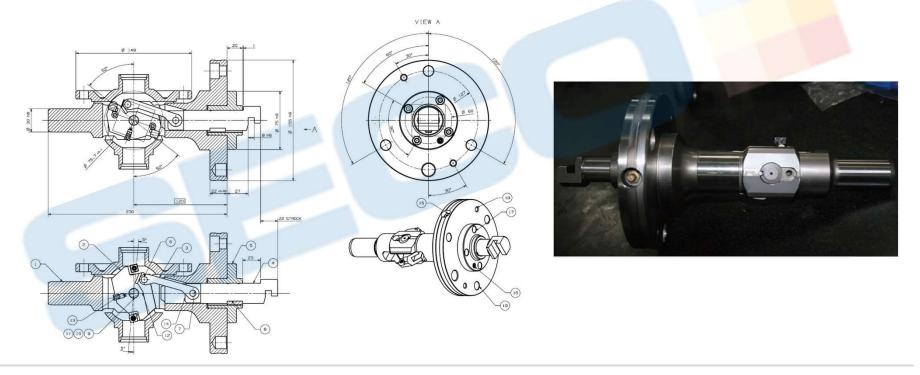
Machining Process-Spherical finishing

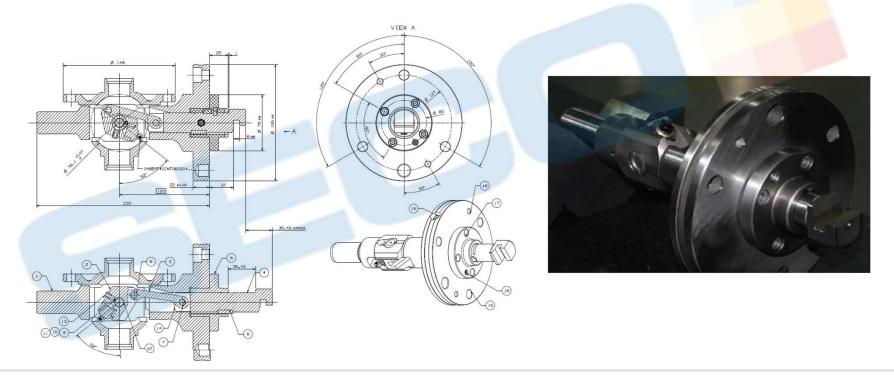
- Used in machines with B axis;
- Brazed Carbide bar for finishing;
- Roughness-Ra1.6;

Insert	DCGW11T304S-01020-L1-B, CBN010
Tool	
Cutting Speed	177 m/min (S=600)
feedrate	0.1 mm/r

Machining Process-Full Spherical machining

The cutter feed into the housing from the side window


Insert	DCMT11T308-F1,TK2001
Tool	
Cutting Speed	m/min (S=?)
feedrate	? mm/r



Machining Process-Spherical machining with feed-out tool-Roughing

Machining Process-Spherical machining with feed-out tool-Finishing

Machining Process-Planetary gear contact faces machining

Material: nodular cast iron GH603810

Hardness: 170 to 210 HB

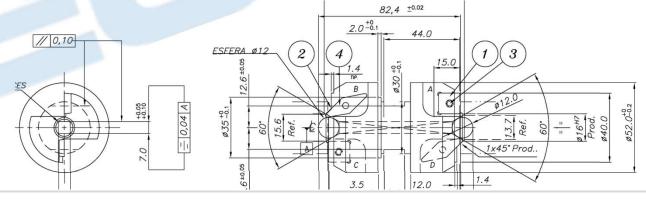
Vc = 100 m/mn

Fn = 0.1 mm/rev

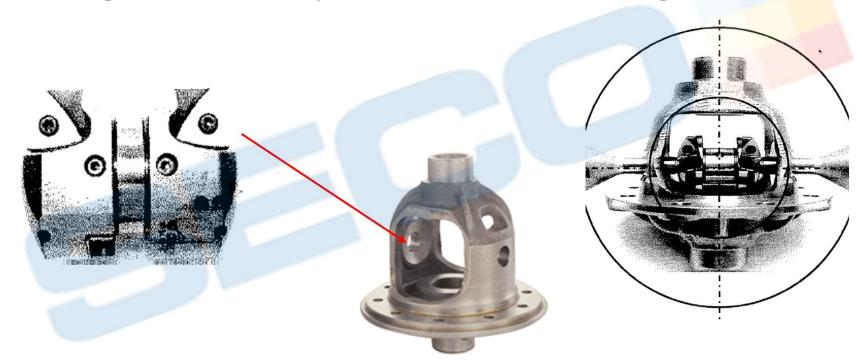
Wet machining

Power on the machine= 61,6 kw

Tool life:


SCMT insert= 750 pcs/edge

DCMT insert= 3000 pcs /edge


Planetary gear plane machining

Satellite spherical machining

Machining Process-Satellite spherical contact faces machining

SECO