

Future Automotive E/E Architectures – On the Path towards a new E/E Paradigm

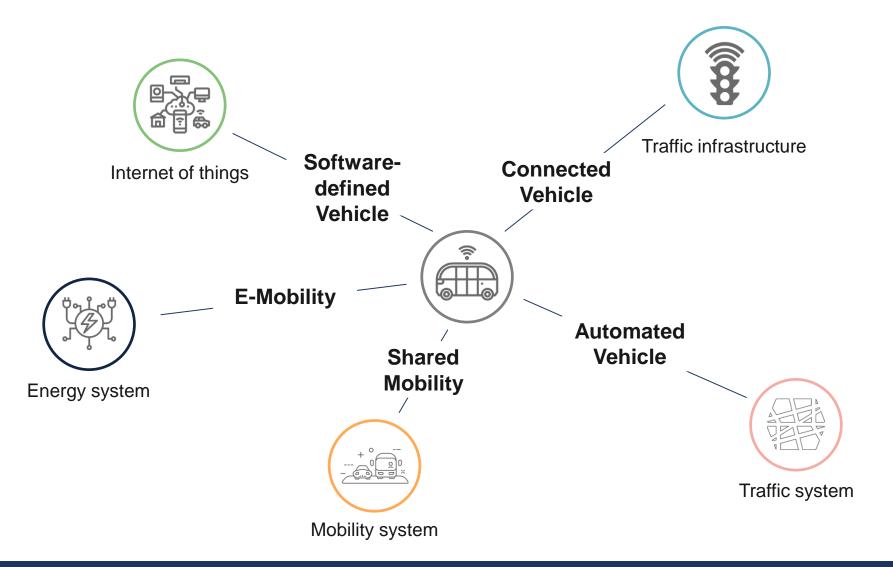
Author: Christian Burkard

Agenda

- » Introduction and Motivation
- **»** Vehicle Cloud & Edge Computing
- » Software-Defined Vehicles
- » Centralized Hardware Architectures
- » Implications for Automotive Players

CREATING IDEAS & DRIVING INNOVATIONS	25/10/2022	#8400	
CREATING IDEAS & DRIVING INNOVATIONS	Slide No. 2	22cbu0026.pptx	© fka GmbH

Agenda


» Introduction and Motivation

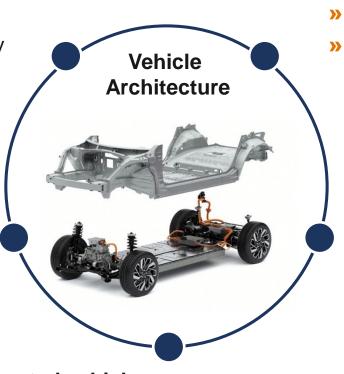
- **»** Vehicle Cloud & Edge Computing
- **»** Software-Defined Vehicles
- **»** Centralized Hardware Architectures
- **»** Implications for Automotive Players

CREATING IDEAS & DRIVING INNOVATIONS	25/10/2022	#8400	
	Slide No. 3	22cbu0026.pptx	© fka GmbH

As a consequence of digital mobility, the vehicle becomes a component of large higher-level systems

25/10/2022	#8400	
Slide No. 4	22cbu0026.pptx	© fka GmbH

Current development trends in the automotive industry imply comprehensive changes to vehicles' E/E architecture



Electric Mobility

- » New high-voltage levels
- » Impact on energy network topology

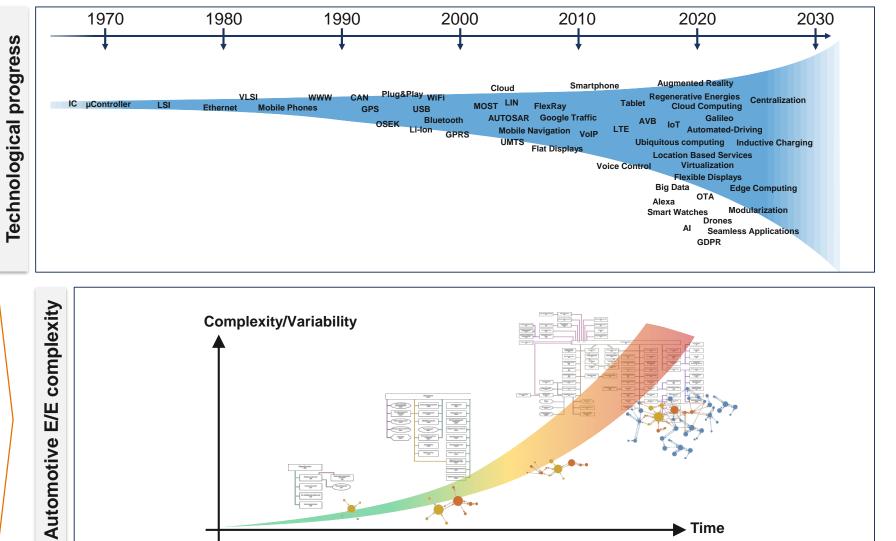
Shared mobility

- » Completely new vehicle layouts
- » Normally purpose-design approach

Connected vehicles

- Functions based on vehicle-external data
- » Upgradeability becomes key requirement

Automated Driving


- Impact on basic vehicle functions
- New hardware and software architectures

Software-defined vehicles

- » Enabler for all vehicle functions
- >> Vehicle as a software-centric product

The high technological variance of future mobility requires new approaches to manage complexity

Technological progress for E/E systems further accelerating, hence also increasing complexity in the automotive E/E domain

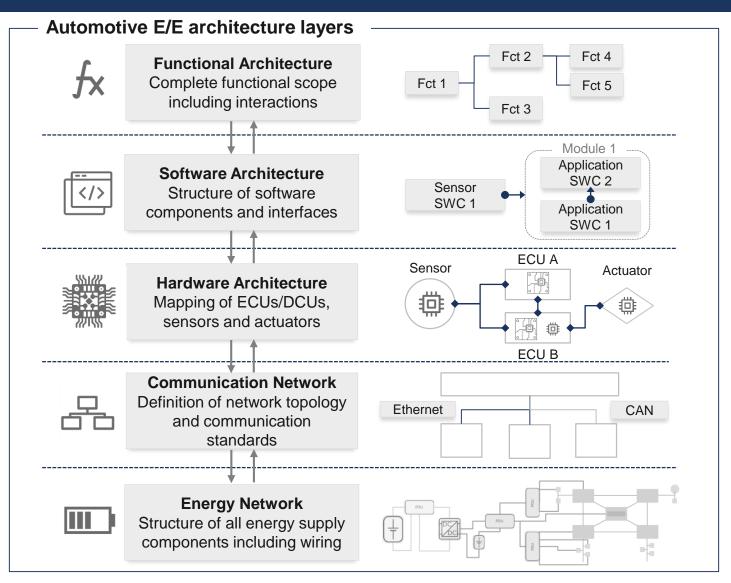
Technological dynamics:

- Technological development pace for general E/E systems has increased significantly
- High number of potentially disruptive technologies

Automotive E/E impact:

- Continuous integration of new technologies and functions
- Reduction of development cycle times required
- » Increasing complexity on HW and SW level

CREATING IDEAS	& DRIVING INNOVATIONS
----------------	-----------------------

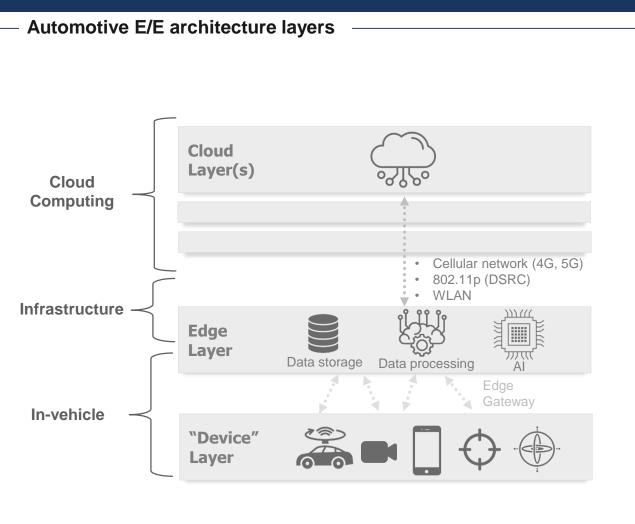

25/10/2022	#8400	
Slide No. 6	22cbu0026.pptx	© fka GmbH

New development and implementation approaches for automotive E/E architectures affect all architectural layers

Emergence of a new E/E paradigm:

- Previous decades: Rather evolutionary
 development path of vehicle's E/E domain
- » Requirements for E/E architectures have increased extremely, multitude of new functions have to be implemented
- » New development and implementation approaches for automotive E/E architectures are currently gaining traction
- Traditional OEM are restructuring their processes, supply chains and organizational structure
- » Automotive industry is about to switch to a new E/E paradigm, affecting all players with any kind of E/E hardware or software

25/10/2022	#8400	
Slide No. 7	22cbu0026.pptx	© fka GmbH

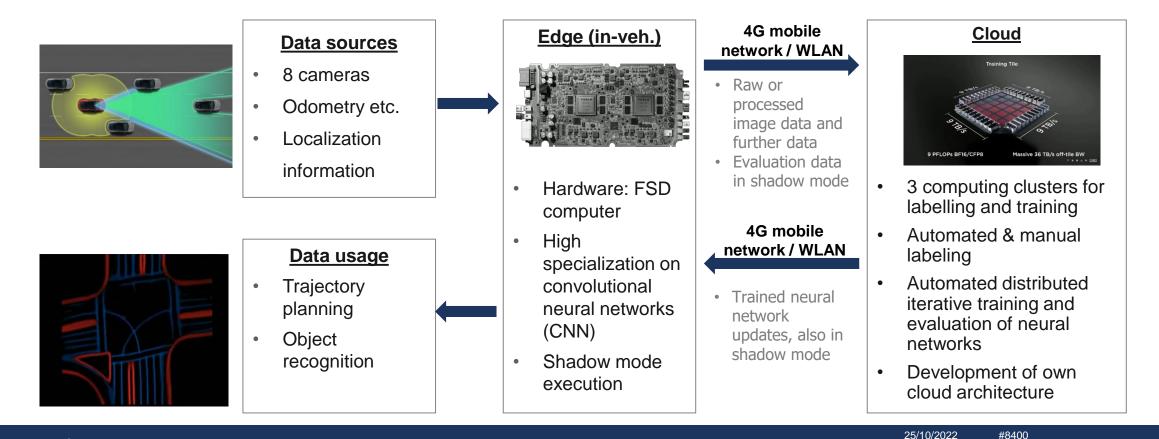

» Introduction and Motivation

- >> Vehicle Cloud & Edge Computing
- **»** Software-Defined Vehicles
- **»** Centralized Hardware Architectures
- **»** Implications for Automotive Players

CREATING IDEAS & DRIVING INNOVATIONS	25/10/2022	#8400	
CREATING IDEAS & DRIVING INNOVATIONS	Slide No. 8	22cbu0026.pptx	© fka GmbH

Vehicle Edge and Cloud Computing extend the system scope beyond the actual vehicle and enable new functions

Definition: Vehicle Edge Computing


- Basic concept: Capturing and processing data as close to the data source as possible
- » "Network edge": Network-embedded infrastructure
- » "Device edge": Devices connected to the wireless network
- » "Vehicular edge computing (VEC)": Utilization of edge nodes in close proximity of vehicles (e.g. in road side units)
- » Reasons for edge computing (compared to cloud computing)
 - » Reduced latency and increased speed
 - » Reduce congestion of (future) networks
 - » Improved security and privacy
 - » Reliability and robustness

Tesla extensively uses Edge and Cloud Computing approaches to further develop ADAS/AD functions of their vehicles

»

- Example: Neural network training data
- » Using complete **Tesla fleet for generating training data** for neural networks incl. shadow mode
- » Identification of training data for transmission to cloud from vehicles, e.g. to identify "edge cases"
 - Additionally: Shadow mode calculated trajectories are offset against actual driver trajectories

fi (a)

- » Introduction and Motivation
- **»** Vehicle Cloud & Edge Computing
- » Software-Defined Vehicles
- **»** Centralized Hardware Architectures
- **»** Implications for Automotive Players

CREATING IDEAS & DRIVING INNOVATIONS	25/10/2022	#8400	
CREATING IDEAS & DRIVING INNOVATIONS	Slide No. 11	22cbu0026.pptx	© fka GmbH

The emergence of Software-Defined Vehicles represents a fundamental change of development focus for the industry

- **Definition: Software-Defined Vehicle (SDV)**
- » Software-first approach: Vehicle functions and features are mainly as software
- **»** Shift of focus from hardware-based electromechanical product to software-centric system
- » Enables an abstraction from the underlying hardware, hence facilitating updates and upgrades of functions

 Automotive softw 	vare stack –			
	Data Platfor	m	V2X	
	Dala Fialioi		VZA	
Cloud level	Security		ΟΤΑ	
	Connectivity	Mapping	Predicti	on
Application level	Control	Planning		
	Ν	liddleware		pe
Software base level	Ope	rating System		Centralized
Hardware level	Pro	cessing Unit		

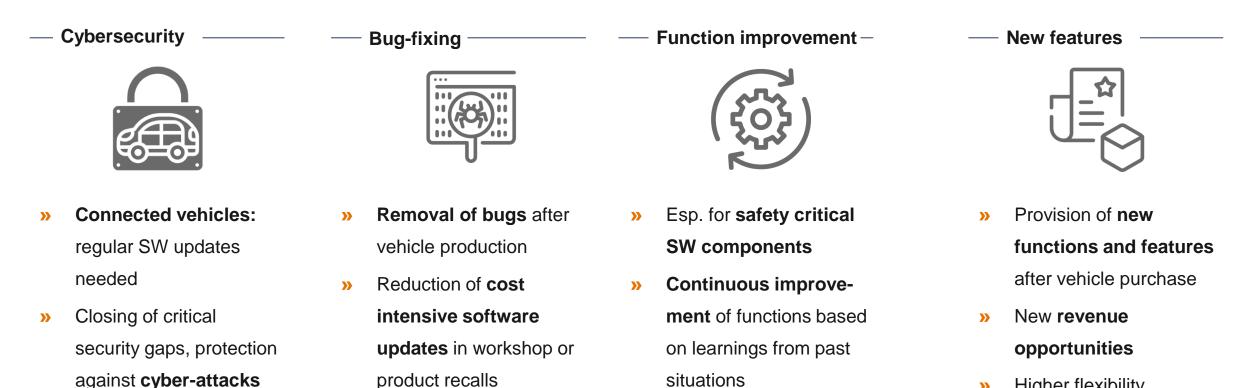
- » SDVs require a complete redesign of the automotive software architecture
- Hardware abstraction is realized by a strict
 separation between software and hardware
- » Middleware:
 - » Software to enable interaction of applications
 - Provision of services for all applications (e.g. data management, messaging)
 - Abstraction layer between applications and the operating system

Multiple players are currently competing in the market for future Automotive Operating Systems (OS)

Autosar Adaptive

OS Specialists OEMs Tech Players All-in-one solutions In-house development New market entrants Google **WNDRVR** WindRiver VxWorks Android Automotive *** BlackBerry **NVIDIA** TESLA QNX **QNX** Neutrino NVIDIA DRIVE OS -1-**Green Hills** Apple and others will Green Hills INTEGRITY ΤΟΥΟΤΑ strive in the market **Consortia / Open Source** Common standards and basic software AUTOMOTIVE GRADE LINUX AUTOSAR Linux AGL Apollo IOV OS

Description


- Automotive OS: Basis of the automotive » software stack, low level hardware-oriented layer
- Manages hardware resources and performs » tasks on the associated hardware (e.g. memory allocation, processor time scheduling)
- Strict requirements regarding safety and » cybersecurity acting as drivers for new OS
- Intensive development and market activities » by multiple automotive stakeholders
- **Open-source based OS** will become » increasingly important, new forms of cooperation between OEMs emerging

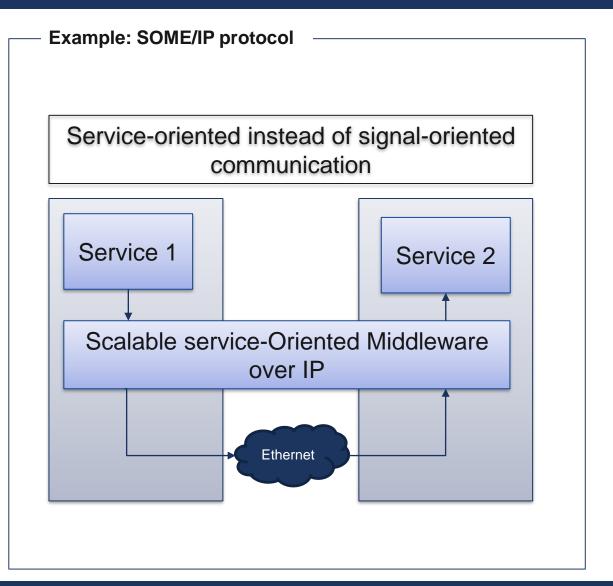
Selected Automotive OS stakeholders

Realization of Over-the-Air (OTA) updates represents a basic requirement for automated and connected vehicles

- Definition: OTA updates and upgrades
- **Over-the-Air (OTA) capability:** Remote modification of in-vehicle software (without workshop visit) »
- **OTA updates:** Improvement of existing software, e.g. to close security gaps or to remove software errors »
- **OTA upgrades:** Provision of new functions and features for customers after vehicle purchase (e.g. personalization) »

Higher flexibility »

Service-Oriented Architectures (SOA) facilitates OTA updates and will be established as a standard for automotive software

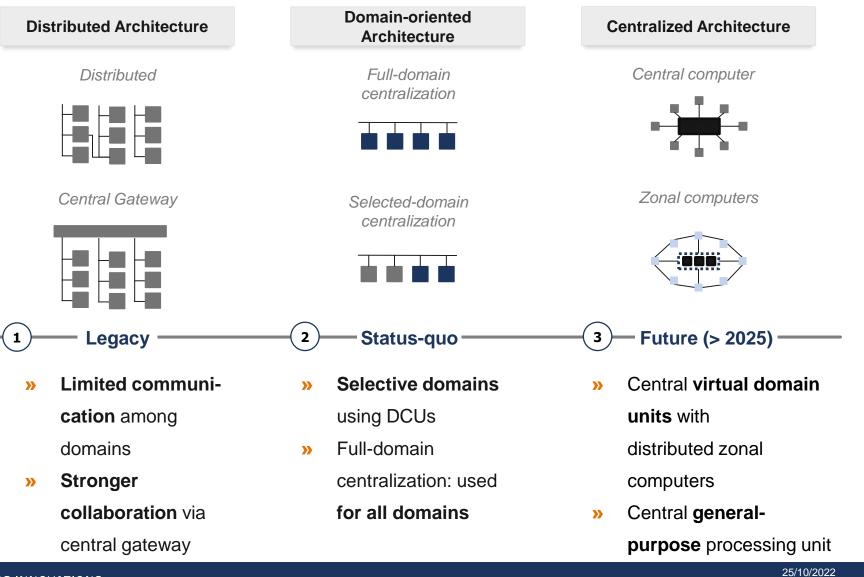


— Functionality

- Each software function is separated into a different
 service that can be integrated during runtime
 - » Signal-oriented communication: static signal libraries and communication matrices must be defined during development.
 - SoA: Services are linked to a specific activity, they have a standardized interface through which they can exchange data and are self-contained.

Benefits

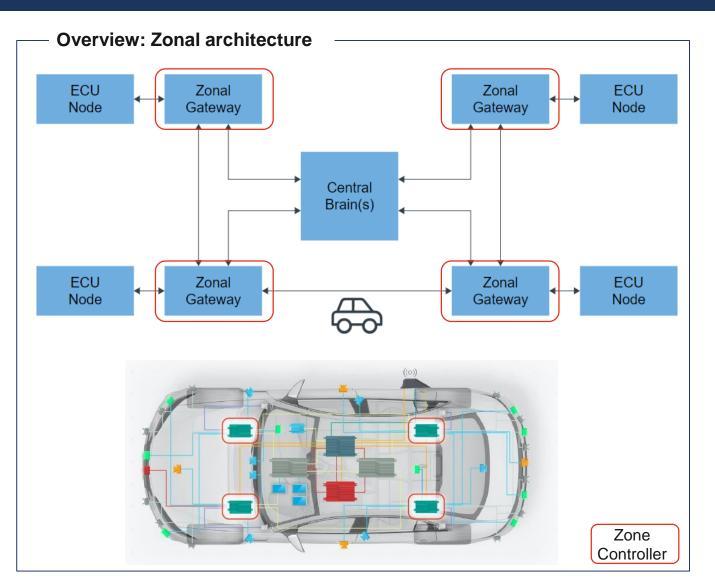
- Enables modification of services after the design process is finalized
- Modular approach, improves reusability and scalability of software components
- » Realization of hardware independency



- » Introduction and Motivation
- **»** Vehicle Cloud & Edge Computing
- **»** Software-Defined Vehicles
- » Centralized Hardware Architectures
- **»** Implications for Automotive Players

CREATING IDEAS & DRIVING INNOVATIONS	25/10/2022	#8400	
	Slide No. 16	22cbu0026.pptx	© fka GmbH

Hardware architectures are currently undergoing a comprehensive transformation process towards centralized architectures



CREATING IDEAS & DRIVING INNOVATIONS

0/2022	#6400	
e No. 17	22cbu0026.pptx	© fka GmbH

Slide

An evolutionary development towards zonal architectures and an emergence of mixed architectures is expected

Description

- » Basis: Domain-independent high performance vehicle computer, executing complex functions from all domains
- Few zone controllers are distributed in the vehicle, physically located near sensors and actuators
- » Zone controllers distribute power and data within the zone and can perform zone-individual functions
- » Reduction of ECUs, HW complexity and wiring
- » Standardization of hardware

CREATING IDEAS & DRIVING INNOVATIONS

Agenda

- » Introduction and Motivation
- **»** Vehicle Cloud & Edge Computing
- **»** Software-Defined Vehicles
- **»** Centralized Hardware Architectures
- » Implications for Automotive Players

CREATING IDEAS & DRIVING INNOVATIONS	25/10/2022	#8400	
	Slide No. 19	22cbu0026.pptx	© fka GmbH

Automotive players have to address three main fields of action on the path towards a new E/E paradigm

Implications for automotive players

Software perspective

» Implement strict separation between hardware and software

- » Realize modular structure for functional software to improve reusability
- » Extend scope of software functions beyond actual vehicle

Hardware perspective

- » Short-term: Manage coexistence of different hardware architectures and requirements
- » Reduce complexity of the hardware architecture on all architectural layers
- » Mid-term: Pursue standardization of hardware components, e.g. vehicle computers

Business perspective

⊢∳¬

- >> Business model: Offer and purchase functional **software** as a **stand-alone product**
- >> Organization: Align process and organizational structure for **feature-driven development**
- » Strategy: Define a suitable product portfolio and technology strategy

Thank you for your attention.

fka GmbH Steinbachstr. 7 52074 Aachen Germany

phone +49 241 8861 116
e-mail christian.burkard@fka.de
web www.fka.de

Christian Burkard

