

Monetizing CO₂ – Technology strategies for NEV

Alexander Busse, Christian Harter

What's the automotive perspective in ramping-up H_2 economy under the impression of multidimensional value of CO_2 ?

The hydrogen ecosystem will supply different industries

in the transformation towards sustainability

Hydrogen automotive position is shaped by the strong competition with battery electric powertrains

Agenda

>> The value of CO_2 in the automotive industry

- » Hydrogen as sustainable propulsion?
- **»** Technology and use-case perspective for hydrogen in vehicles
- » Implications of CO₂ on hydrogen vehicle technology decisions
- » Conclusion

CDEATING IDEAS & DDIVING INNOVATIONS	12/11/2022	#8400	
	Slide No. 3	22abu0033.pptx	© fka GmbH

The value of CO_2 is determined multidimensionally - and increasingly rising!

Pressure from regulation and expectations from society lead to monetarization of sustainability aspects

12/11/2022 #8400 Slide No. 4 22abu0033.pptx © fka GmbH

Limitations of CO₂ regulation framework are increasingly addressed by initiatives

DEATING IDEAS & DDIVING INNOVATIONS	12/11/2022	#8400	
	Slide No. 5	22abu0033.pptx	© fka GmbH

EU Emission Trading System and its impact on automotive industry

Status Quo

- » Electricity and heat generation
- » Energy intensive industries
- » Aviation as only mobility branch

Relevant for automotive

- » Vehicle material concepts
- » Process heat generation & efficiency
- » Paint shops (CO₂ equivalents)
- » general electricity demand in production & recycling phase.

Drastic increase of price level

- Record high in Aug. 2022: ~100 € / t
- Price level until 2018: ~10 € / t
- Further increase to 150 € / t expected! [1]

10 € / t equals to ca. 3 € / g CO₂ per km in usage phase*

neglectable price level compared to technological use phase measures

100 € / t equals to ca. 30 € / g CO₂ per km in usage phase*

price level in the range of vehicle technology measures such as downsizing

* 1 g CO2/km reduction in vehicle creates overall savings of ca. 300 kg CO2 in vehicle lifetime / lifetime mileage 300,000 km

In recent years, production emissions have become a relevant factor also from a monetary perspective

12/11/2022	#8400	
Slide No. 6	22abu0033.pptx	© fka GmbH

CREATING IDEAS & DRIVING INNOVATIONS

Recycling phased is increasingly relevant given carbon footprint of battery system, motivating legislative actions

Overview of ESG criteria by given timeframe

* Includes goals which have been announced, but yet to be given a timeframe *†* Includes some goals planned for 2025

 12/11/2022
 #8400

 Slide No. 8
 22abu0033.pptx
 © fka GmbH

Environmental, Social and Governance aspects monetize through investor's strategies

ESG targets become a relevant factor in investment and have a direct impact on financing costs of OEM and suppliers

12/11/2022	#8400	
Slide No. 9	22abu0033.pptx	© fka GmbH

Agenda

- **>>** The value of CO_2 in the automotive industry
- **»** Hydrogen as sustainable propulsion?
- **»** Technology and use-case perspective for hydrogen in vehicles
- » Implications of CO₂ on hydrogen vehicle technology decisions
- » Conclusion

CREATING IDEAS & DRIVING INNOVATIONS	12/11/2022	#8400	
	Slide No. 10	22abu0033.pptx	© fka GmbH

CO₂ in the sustainability perspective: Can Hydrogen compete with BEV?

Life Cycle Assessment

Possible Parameters:

. . .

- Energy mix... (% of renewables)
- Driven mileage... (100.000-300.000km)
- Manufacturing location... (USA/Europe/China)
- Energy storage size (esp. battery)

⇒ LCA Studies can come to different results, due to different boundaries and parameters

Passenger Car and Commercial Vehicle LCA

FCEV can compete with BEV regarding life cycle CO₂ footprint especially with increasing battery size of BEV (or smaller buffer battery for FCEV) However BEV outperform FCEV in use-phase due to higher efficiency and

- **>>** The value of CO_2 in the automotive industry
- **»** Hydrogen as sustainable propulsion?
- **»** Technology and use-case perspective for hydrogen in vehicles
- » Implications of CO₂ on hydrogen vehicle technology decisions
- » Conclusion

CPEATING IDEAS & DDIVING INNOVATIONS	12/11/2022	#8400	
	Slide No. 12	22abu0033.pptx	© fka GmbH

Wide range of commercial vehicle applications and requirements provide market for multi-technology strategy

CREATING IDEAS & DRIVING INNOVATIONS

12/11/2022 #8400 Slide No. 13 22abu0033.pptx © fka GmbH

Vehicle application fields interrelate with the expectations formulated for energy storage options

Weight-sensitive use cases can create a significant advantage from using H₂ solutions

	12/11/2022	#8400	
CREATING IDEAS & DRIVING INNOVATIONS	Slide No. 14	22abu0033.pptx	© fka GmbH

Voices of key-players regarding BEV and FCEV commercial vehicles: Hydrogen will be in the fleet

Relevance of hydrogen for different mobile applications is shaped by the energy-depended use-cases

	Requirements	Energy carrier 2030+	H ₂ Storage	H_2 Conversion	H ₂ Potential 2050
PCs und LCVs	Sustainability pressure, quantities, energy content (large seg.)	Battery, Hydrogen	CGH ₂ @700 bar	Fuel Cell (FC)	Medium
HDCVs and busses	Cost, range (energy density & content)	Hydrogen, Battery, LNG	CGH _{2,} LH ₂	FC / Hydrogen combustion engine (HICE)	High
Construct. and agricult. machinery	Utility, energy content, power	Hydrogen, Synfuel, Battery	CGH ₂ @350 bar/ @700 bar LH ₂	FC/ HICE	High

- Hydrogen has a relevance in weight-sensitive and / or range sensitive use cases
- ⇒ Commercial on- and off-highway vehicles do have a high hydrogen potential in the long-term
- Fuel cells will be the major energy converter in hydrogen vehicles, hydrogen combustion engines might have a potential in offhighway vehicle segments
- Compressed hydrogen (CGH₂) will play major role as energy storage for hydrogen vehicles

- **>>** The value of CO_2 in the automotive industry
- » Hydrogen as sustainable propulsion?
- **»** Technology and use-case perspective for hydrogen in vehicles
- **»** Implications of CO₂ on hydrogen vehicle technology decisions
- » Conclusion

CPEATING IDEAS & DRIVING INNOVATIONS	12/11/2022	#8400	
	Slide No. 17	22abu0033.pptx	© fka GmbH

Case study hydrogen storage: Alternatives towards lower CO₂ footprint of production phase realize cost advantages too

age source: ECS Composit

Reference

- Hydrogen long-haul tractor
- » Energy storage: 4*CGH₂ à 15kg H₂

State-of-the-Art

Type 4 storage: non-metallic liner, CFRP wrapping

- » Specific costs system: 400 € / kg H₂
- » Gravimetric storage density: 17 kg / kg H₂

Gravimetric storage density

24.000 € ; 1020 kg

Alternative material for liner: UHS Steel

Ultra high-strength steel tube

- » Specific costs system: 210 € / kg H₂ (*Assumption)
- » Gravimetric storage density: ~45 kg / kg H_{2 (*Assumption)}

System costs 🕢 Sustainability, Recycling, LCA

12600 € ; 2700 kg

Case study hydrogen storage: Heavy alternatives show monetary drawbacks in potential future regulation schemes

Reference

Tailpipe emission legislation onlyNo difference between technologyoptions as TPE are always Zero

Potential future scenario: Energy-based regulation

- Accounts for the differences in energy consumption in use phase and the CO₂ emission factor of the respective fuel
 - Technology measures for BEV and FCEV become relevant for CO₂ regulation, e.g. lightweight design
 State-of-the-Art saves ca.
 0.35 kg H₂/100 km in typical longhaul driving cycle (*Assumption)

Evaluation of use phase (based on regulation scenario)

efficiency impact of lightweight design

12/11/2022	#8400	
Slide No. 19	22abu0033.pptx	© fka GmbH

Agenda

- **>>** The value of CO_2 in the automotive industry
- » Hydrogen as sustainable propulsion?
- » Technology and use-case perspective for hydrogen in vehicles
- » Implications of CO₂ on hydrogen vehicle technology decisions
- » Conclusion

CDENTING IDENS & DDIVING INNOVATIONS	12/11/2022	#8400	
	Slide No. 20	22abu0033.pptx	© fka GmbH

Conclusion – strategic implications of multidimensional value of CO_2

CO₂ Value

- » Strong push of legislation and society to reflect life cycle aspects
- » OEM have to force sustainability, esp. CO₂ footprint in the automotive value chain with ambitious ESG targets
- » Regulatory development combines GWP of life cycle with economic boundary conditions

» Hydrogen in vehicles is a promising technology option, LCA evaluation shows energy storage size (#battery) dependency in the sustainability perspective in the BEV-FCEV competition

Implications

•

- » LCA/CO₂ importance in technology strategies and product development process rises significantly
- » New/alternative technologies and materials are becoming attractive and open up perspectives for suppliers/OEM in the ramping-up of xEV ecosystems

fka GmbH Steinbachstr. 7 52074 Aachen Germany

phone+49 241 8861 167e-mailalexander.busse@fka.dewebwww.fka.de

Alexander BUSSE Lead Expert Sustainability Strategies

